Yarrowia lipolytica mutants devoid of pyruvate carboxylase activity show an unusual growth phenotype.

نویسندگان

  • Carmen-Lisset Flores
  • Carlos Gancedo
چکیده

We have cloned and characterized the gene PYC1, encoding the unique pyruvate carboxylase in the dimorphic yeast Yarrowia lipolytica. The protein putatively encoded by the cDNA has a length of 1,192 amino acids and shows around 70% identity with pyruvate carboxylases from other organisms. The corresponding genomic DNA possesses an intron of 269 bp located 133 bp downstream of the starting ATG. In the branch motif of the intron, the sequence CCCTAAC, not previously found at this place in spliceosomal introns of Y. lipolytica, was uncovered. Disruption of the PYC1 gene from Y. lipolytica did not abolish growth in glucose-ammonium medium, as is the case in other eukaryotic microorganisms. This unusual growth phenotype was due to an incomplete glucose repression of the function of the glyoxylate cycle, as shown by the lack of growth in that medium of double pyc1 icl1 mutants lacking both pyruvate carboxylase and isocitrate lyase activity. These mutants grew when glutamate, aspartate, or Casamino Acids were added to the glucose-ammonium medium. The cDNA from the Y. lipolytica PYC1 gene complemented the growth defect of a Saccharomyces cerevisiae pyc1 pyc2 mutant, but introduction of either the S. cerevisiae PYC1 or PYC2 gene into Y. lipolytica did not result in detectable pyruvate carboxylase activity or in growth on glucose-ammonium of a Y. lipolytica pyc1 icl1 double mutant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The gluconeogenic enzyme fructose-1,6-bisphosphatase is dispensable for growth of the yeast Yarrowia lipolytica in gluconeogenic substrates.

The genes encoding gluconeogenic enzymes in the nonconventional yeast Yarrowia lipolytica were found to be differentially regulated. The expression of Y. lipolytica FBP1 (YlFBP1) encoding the key enzyme fructose-1,6-bisphosphatase was not repressed by glucose in contrast with the situation in other yeasts; however, this sugar markedly repressed the expression of YlPCK1, encoding phosphoenolpyru...

متن کامل

Regulatory role of the PKA pathway in dimorphism and mating in Yarrowia lipolytica.

Previous studies on the dimorphic transition of Yarrowia lipolytica suggested opposite roles for MAPK and PKA pathways in this phenomenon. To obtain conclusive evidences for these opposite roles we isolated and disrupted the unique gene encoding the Pka catalytic subunit (TPK1). TPK1 was regulated only at the post-transcriptional level, with Pka activity increasing during yeast-like growth. tpk...

متن کامل

High-throughput transformation method for Yarrowia lipolytica mutant library screening.

As a microorganism of major biotechnological importance, the oleaginous yeast Yarrowia lipolytica is subjected to intensive genetic engineering and functional genomic analysis. Future advancements in this area, however, require a system that will generate a large collection of mutants for high-throughput screening. Here, we report a rapid and efficient method for high-throughput transformation ...

متن کامل

Ambient pH signalling in the yeast Yarrowia lipolytica involves YlRim23p/PalC, which interacts with Snf7p/Vps32p, but does not require the long C terminus of YlRim9p/PalI.

A conserved ambient pH signal transduction pathway has been evidenced in both ascomycetous yeasts and filamentous fungi, called the Rim or Pal pathway, respectively. However, closely related PalC orthologues are found only in Yarrowia lipolytica and in filamentous fungi, where the Rim9p/PalI factor has a much longer C-terminal tail than in other yeasts. We show here that, like Aspergillus nidul...

متن کامل

A phosphatidylinositol/phosphatidylcholine transfer protein is required for differentiation of the dimorphic yeast Yarrowia lipolytica from the yeast to the mycelial form

The SEC14SC gene encodes the phosphatidylinositol/phosphatidylcholine transfer protein (PI/PC-TP) of Saccharomyces cerevisiae. The SEC14SC gene product (SEC14pSC) is associated with the Golgi complex as a peripheral membrane protein and plays an essential role in stimulating Golgi secretory function. We report the characterization of SEC14YL, the structural gene for the PI/PC-TP of the dimorphi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 4 2  شماره 

صفحات  -

تاریخ انتشار 2005